УДК 593.194(470.341)

ПЕРВАЯ РЕГИСТРАЦИЯ *HENNEGUYA ALEXEEVI* (MYXOZOA, MYXOBOLIDAE) НА ТЕРРИТОРИИ ЕВРОПЫ

С. Г. Соколов¹, М. Б. Шедько², Е. Н. Протасова¹, А. Н. Решетников¹

 ¹ Институт проблем экологии и эволюции им. А. Н. Северцова РАН, Ленинский пр., 33, Москва, 119071 Россия E-mail: sokolovsg@mail.ru
 ² Биолого-почвенный институт ДВО РАН,

пр. 100-летия Владивостока, 159, Владивосток, 690022 Россия

Получено 21 февраля 2010 Принято 10 ноября 2011

Первая регистрация *Henneguya alexeevi* (Мухогоа, Муховоlidae) на территории Европы. Соколов С. Г., Шедько М. Б., Протасова Е. Н., Решетников А. Н. — У интродуцированного ротана *Perccottus glenii* на территории Нижегородской области России обнаружен специфичный для него паразит миксоспоридия *Henneguya alexeevi* Schulman, 1962. Это первая регистрация данного паразита в Европе. Приведены размеры спор *H. alexeevi* из Нижегородской области и Приморского края (нативная часть ареала паразита). Полученные данные уточняют морфологическую характеристику спор этого вида миксоспоридий.

Ключевые слова: Henneguya alexeevi, Perccottus glenii, Европа, адвентивный ареал.

The First Record of *Henneguya alexeevi* (Myxozoa, Myxobolidae) in Europe. Sokolov S. G., Shedko M. B., Protasova E. N., Reshetnikov A. N. — Specific parasite of the introduced fish Amur sleeper *Perccottus glenii* myxozoan *Henneguya alexeevi* Schulman, 1962 was recorded on the territory of Nizhniy Novgorod province, Russia. This is the first record of this parasite in Europe. Dimensions of spores *H. alexeevi* from Nizhny Novgorod province and Primorsky region (the native range of the parasite) are given. The data obtained clarify the morphological characteristics of spores of this myxozoans species.

Key words: Henneguya alexeevi, Perccottus glenii, Europe, adventive range.

Введение

Неппедиуа alexeevi Schulman, 1962 — один из 8 видов миксоспоридий, обнаруженных у ротана *Perccottus glenii* Dybowski, 1877 — пресноводной рыбы семейства Odontobutidae (Донец, Шульман, 1984; Ермоленко, 2004; Русинек, 2007 и др.). Этот паразит был зарегистрирован у него только на территории Китая и дальневосточного региона России: в бассейнах р. Амур и залива Петра Великого (Шульман, 1962; Ермоленко, 1992; Chen, Ma, 1998 и др.), то есть в нативной части ареала ротана (Берг, 1916 и др.). В XX в. произошло значительное увеличение ареала этой рыбы за счет случайных либо преднамеренных интродукций в водоемы Европы и Сибири и последующего саморасселения на новых территориях. В настоящий момент адвентивная часть ареала ротана по площади существенно превышает нативную часть (Reshetnikov, 2010 и др.). Данный вид рыб относится к нежелательным вселенцам, появление которого в новых водоемах может привести к негативной трансформации местных экосистем (Reshetnikov, 2003 и др.). Проникновение ротана в новые бассейны может сопровождаться заносом связанных с ним паразитов и их натурализацией в реципиентных экосистемах (Пронин и др., 1998 и др.).

В мае 2010 г. плазмодии со спорами *H. alexeevi* обнаружены у ротана на территории Нижегородской обл. России, то есть в пределах адвентивного ареала этой рыбы. Это первая регистрация данной миксоспоридии в Европе и в пределах адвентивного ареала ротана в целом. Цель публикации — документация находки *H. alexeevi* в Европейской части ареала хозяина и уточнение морфологических признаков спор этого паразита.

Материал и методы

Работы в Нижегородской обл. проведены в период 21–23 мая 2010 г. Исследовано 39 экз. ротана, длина тела (L) которых составляла 57–238 мм. Рыбы выловлены в прудах Илевского рыбоводного хозяйства (54°57° с. ш., 43°02' в. д.), расположенного на р. Сарма — притоке р. Мокша (бассейн р. Ока). Морфология спор *H. alexeevi* изучена по глицерин-желатиновым препаратам с применением фазовоконтрастной микроскопии. Описание составлено на основе измерений 48 спор со свернутыми полярными нитями (по 24 экз. из брыжейки и семенника). Промеры спор сделаны по схеме С. С. Шульмана (1966). Размеры спор приведены в микрометрах, в скобках — средняя величина и среднеквадратическое отклонение (M ± σ).

Для сравнительного анализа, с использованием тех же методических приемов, изучено 53 экз. спор *H. alexeevi* (22 экз. с жабр и 31 экз. из яичника) от ротанов, выловленных в июле 2010 г. из озера (43°06' с. ш., 131°38' в. д.), расположенного в пойме приустьевой зоны р. Барабашевки (бассейн залива Петра Великого, юг Приморского края), то есть в нативном ареале данной рыбы. Исследовано 45 ротанов, длина тела которых составляла 97–173 мм.

Статистическая обработка цифрового материала по размерным признакам спор включала в себя проверку распределения дат на соответствие нормальному закону с использованием классических методов и сравнение средних значений по t-критерию Стьюдента (Лакин, 1990). Различия между значениями считали статистически значимыми при p < 0,05.

Результаты

У ротана из прудов Илевского рыбоводного хозяйства многоспоровые плазмодии *H. alexeevi* в виде цист обнаружены в брыжейке и семеннике. Встречаемость паразита — у 1 из 39 исследованных ротанов (2,6 %). Цисты белого цвета округлой или овальной формы, без соединительнотканной оболочки хозяина. Их размер $65-80 \times 70-90$. Споры двустворчатые, веретенообразные с суженным передним концом и двумя хвостовыми отростками, отходящими от заднего полюса створок (рис. 1, 2). Наибольшая ширина споры приходится на границу средней и задней

Рис. 1. Споры *Henneguya alexeevi* от ротана (Нижегородская обл. РФ). Масштабная линейка 20 мкм.
Fig. 1. Spores of *Henneguya alexeevi* from *Perccottus glenii* (Nizhniy Novgorod province, Russia). Scale bar 20 μm.
Рис. 2. Спора *Henneguya alexeevi* от ротана (Нижегородская обл. РФ). Масштабная линейка 20 мкм.
Fig. 2. Spore of *Henneguya alexeevi* from *Perccottus glenii* (Nizhniy Novgorod province, Russia). Scale bar 20 μm.

трети длины споры. Хвостовые отростки тонкие. Две удлиненно-грушевидные полярные капсулы со сближенными вершинами, равные или слегка различающиеся по длине, отношение их длин 1,0–1,2 (1,0 ± 0,1). Витков полярной нити в капсуле 7–9, длина выпущенной полярной нити около 37. Спороплазма двуядерная с йодофильной вакуолью. Споры, обнаруженные в разных органах, не имеют статистически значимых различий в размерах, поэтому метрическую характеристику спор мы даем по объединенным данным (табл. 1).

У ротана из бассейна р. Барабашевки цисты со спорами *H. alexeevi* (рис. 3) располагались в жаберных лепестках и ткани яичника (рис. 4). Паразит обнаружен у 3 из 45 исследованных рыб (6,7 %). Цисты паразита по строению не отличаются от описанных выше, но имеют большие размеры (65–230 × 70–270). Споры из разных органов не имеют статистически значимых различий в размерах, поэтому метрическая характеристика спор приведена по объединенным данным (табл. 1).

Споры из прудов Илевского рыбоводного хозяйства и бассейна р. Барабашевки имеют значимые различия по: ширине споры (число степеней свободы, df = 99; t = 3,03), длине хвостовых отростков (df = 99; t = 7,11), общей длине споры (df = 99; t = 7,62) и двум относительным показателям — отношению длины к ширине споры (df = 99; t = 3,63) и отношению длины хвостовых отростков к длине споры без отростков (df = 99; t = 5,21). По остальным признакам различия между спорами из указанных мест исследования отсутствуют или статистически не значимы.

Признак, мкм	Наши данные		Шульман, 1962	Chen, Ma, 1998
	Ротан, бассейн р. Оки (Нижегородская обл. РФ)	Ротан, бассейн р. Барабашевки (Приморский край РФ)	Ротан, бас- сейн р. Зеи (Амурская обл. РФ)	Ротан / толсто- лобик, водоемы Китая*
	$\frac{\text{min-max}}{(M \pm \sigma)}$	min-max $(M \pm \sigma)$	min-max	min-max (M)
Общая длина споры	46,4-56,7 (51,9 ± 2,5)	47,4-62,8 (56,5 ± 3,4)	—	40,8-52,8 (48,0)
Длина споры без хвостовых отростков	20,6-24,7 (22,6 ± 1,2)	20,6-24,7 (22,9 ± 1,0)	19,5-23,4	16,8–19,2 (18,2)
Ширина споры	6,2-8,8 (7,6 ± 0,6)	6,2-8,2 (7,3 ± 0,5)	6,5-8,0	5,0-7,2 (6,0)
Отношение длины к ширине споры	2,6-3,5 $(3,0\pm0,2)$	2,5-3,8 $(3,2 \pm 0,2)$	3,6**	2,3–2,8 (2,5)**
Длина хвостовых отростков	23,7-36,1 (29,3 ± 2,6)	25,8-39,1 (33,6 ± 3,4)	25-30	24,0-33,6 (29,8)
Отношение длины хвостовых отростков к длине споры без хвостовых отростков	1,0-1,8 (1,3 ± 0,2)	1,1-1,8 (1,5 ± 0,2)	1,0-1,6**	1,5-2,8 (2,0)**
Длина полярных капсул	9,8-12,4 (10,7 ± 0,7)	9,6-12,4 (10,9 ± 0,6)	8,5-11,0	7,8-10,8 (8,9)
Ширина полярных капсул	1,9-2,1 (2,0 ± 0,1)	1,9-2,3 (2,1 ± 0,1)	2,5	1,8–2,2 (1,9)
Отношение длины полярной капсулы к длине споры без хвостовых отростков	$0,4{-}0,6$ (0,5 ± 0,1)	0,4-0,6 (0,5 ± 0)	0,4-0,5**	0,6-0,7 (0,6)**

Таблица 1. Размерные признаки спор *Henneguya alexeevi* Table 1. The metric characteristics of *Henneguya alexeevi* spores

* Паразит зарегистрирован Ч. Чэнь, Ч. Ма (Chen, Ma, 1998) у ротана и толстолобика, но не ясно от кого из них взяты споры, измеренные данными авторами.

** Промеры сделаны с рисунков С. С. Шульмана (1962) и Ч. Чэнь, Ч. Ма (Chen, Ма, 1998).

Рис. 3. Плазмодии *Henneguya alexeevi* (цисты) из жаберных лепестков ротана (Приморский край РФ). Масштабная линейка 50 мкм.

Fig. 3. Plasmodia of *Henneguya alexeevi* (cysts) from the gill filaments of *Perccottus glenii* (Primorsky region, Russia). Scale bar 50 µm.

Рис. 4. Органы ротана, пораженные *Henneguya alexeevi* (Приморский край РФ): 1 — цисты в яичнике (стрелки); 2 — цисты в жаберных лепестках (поражены все лепестки).

Fig. 4. The organs of the *Perccottus glenii*, infected by *Henneguya alexeevi* (Primorsky region, Russia): 1 - cysts in ovary (arrows); 2 - cysts in gill filaments (all filaments infected).

Обсуждение

Вид *H. alexeevi* описан С. С. Шульманом по материалу, собранному с жабр и гонад (яичник) ротана, выловленного в районе устья р. Будунды (современное название — р. Ивановка, бассейн р. Зеи) (Шульман, 1962; Винниченко и др., 1971). При первоописании и в сводках С. С. Шульмана (1966) и Л. Н. Винниченко с соавт. (1971) видовой эпитет в биномине этого паразита приведен с окончанием мужского рода (*H. alexeevi*), но в работе З. С. Донец, С. С. Шульмана (1984) - с окончанием женского рода (H. alexeevae). Последнее написание воспроизведено у ряда авторов (Ермоленко, 1992; Chen, Ma, 1998 и др.). В то же время в последней монографии С. С. Шульмана с соавт. (1997) использован вариант, отвечающий мужскому роду. Видовой эпитет данной миксоспоридии является патронимом, и его грамматический род (следовательно, и написание окончания) соответствует половой принадлежности лица, в честь которого назван вид. К сожалению. С. С. Шульман нигде не упоминает об этимологии названия этого паразита, что исключает объективную оценку правильности написания эпитета. В этой связи мы следуем варианту написания, использованному в наиболее поздней работе С. С. Шульмана, а именно *Н. alexeevi* (см. Шульман и др., 1997).

По авторитетному мнению С. С. Шульмана (1966), данная миксоспоридия является специфичным паразитом ротана. Все находки этого паразита на территории России сделаны только у вышеназванного вида рыб (Шульман, 1962, 1966; Винниченко и др., 1971; Донец, Шульман, 1984; Ермоленко, 1992, 2004). Китайские исследователи Ч. Чэнь и Ч. Ма (Chen, Ma, 1998) зарегистрировали *H. alexeevi* у двух хозяев — у ротана из бассейна Амура и толстолобика *Hypophthalmichthys molitrix* (Valenciennes, 1844) из искусственного водоема в китайской провинции Хубэй (бассейн р. Янцзы). Однако данные этих авторов о регистрации *H. alexeevi* и на территории Китая нуждаются в подтверждении.

Значения большинства абсолютных размерных показателей у изученных миксоспоридий из прудов Илевского рыбоводного хозяйства и бассейна р. Барабашевки выходят за пределы соответствующих параметров (табл. 1), указанные для Н. alexeevi в первоописании (Шульман, 1962). Однако в цитируемом источнике нет информации об объеме исследованного материала и характере изменчивости спор этого вида. В других публикациях отечественных авторов (Шульман, 1966; Винниченко и др., 1971; Донец, Шульман, 1984; Ермоленко, 1992, 2004) новые морфологические данные по этому виду не приведены. В тоже время по качественным признакам и средним значениям большинства абсолютных и относительных размерных показателей спор, изученные в настоящей работе миксоспоридии из обоих мест исследования соответствуют характеристике *H. alexeevi*. Таким образом, у нас нет сомнений в принадлежности паразитов, обнаруженных в Нижегородской обл. и Приморье, виду *Н. alexeevi*. Выявленные метрические отличия между ними, по-видимому, обусловлены географической изменчивостью размеров спор, свойственной пресноводным миксоспоридиям (Шульман, 1966; Шульман и др., 1997).

Отдельного рассмотрения заслуживают споры *H. alexeevi*, описанные в книге Ч. Чэнь, Ч. Ма (Chen, Ma, 1998). Максимальное значение длины споры без хвостовых отростков у экземпляров, измеренных и зарисованных данными исследователями, меньше минимальной величины этого признака, отмеченной для *H. alexeevi* на территории России (табл. 1). Отношение длин полярных капсул и споры у указанных экземпляров больше средней величины данного признака, выявленной у *H. alexeevi* в российской части ареала (табл. 1). Таким образом, споры, фигурирующие в книге Ч. Чэнь, Ч. Ма (Chen, Ma, 1998) под названием *H. alexeevi* (у авторов *H. alexeevae*), имеют ряд весомых морфологических особенностей, которые ставят под сомнение адекватность отнесения их к данному виду. К сожалению, эти авторы не сообщают от кого из указанных ими двух хозяев (ротана или толстолобика) взят материал для морфологического описания. Это вынуждает нас перенести высказанное сомнение на все находки *H. alexeevi* на территории Китая, описанные Ч. Чэнь, Ч. Ma (Chen, Ma, 1998).

Безусловно, паразит *H. alexeevi* был занесен в Илевское рыбоводное хозяйство вместе с хозяином — ротаном. По данным Л. А. Кудерского (1980) и ряда других авторов, ротан попал в это хозяйство в 1970 г. вместе с посадочным материалом амурского сазана *Cyprinus rubrofuscus* La Cepède, 1803. У ротана, обитающего в прудах Илевского рыбоводного хозяйства, нами отмечен еще один специфичный для него паразит — цестода *Nippotaenia mogurndae* Yamaguti et Miyata, 1940.

До настоящего момента на территории Европы у ротана отмечены только два специфичных для него паразита — *N. mogurndae* и моногенея *Gyrodactylus perccotti* Ergens et Yukhimenko, 1973 (Ondračková et al., 2007; Košuthová et al., 2008 и др.). Наша публикация подтверждает присутствие в указанном регионе еще одного паразита специфичного для этого вида рыб.

Авторы благодарны И. А. Малышеву за неоценимую помощь в полевых исследованиях. Работа выполнена при поддержке гранта РФФИ № 08-04-00679а.

Бере Л. С. Рыбы пресных вод Российской империи. — М.: Тип. Т-ва Рябушинских, 1916. — 563 с.

- Винниченко Л. Н., Заика В. Е., Тимофеев В. А. и др. Паразитические простейшие рыб бассейна Амура // Паразитол. сб. 1971. 25. С. 10–40.
- Донец З. С., Шульман С. С. Тип Книдоспоридии Cnidosporidia Doflein, 1901, emend. Schulman et Podlipaev, 1980 // Определитель паразитов пресноводных рыб фауны СССР. Т. 1 / Под ред. О. Н. Бауера, С. С. Шульмана. Л. : Наука, 1984. С. 88–251.
- *Ермоленко А. В.* Паразиты рыб пресноводных водоемов континентальной части бассейна Японского моря. Владивосток : Изд-во ДВО РАН, 1992. 238 с.
- *Ермоленко А. В.* Фауна паразитов головешки ротана Perccottus glehni (Eleotridae) Приморского края // Паразитология. 2004. **38**. С. 251–256.
- *Кудерский Л. А.* Ротан в прудах Горьковской области // Рыбохозяйственное изучение внутренних водоемов. — 1980. — **25**. — С. 28–33.
- *Лакин Г.* Ф. Биометрия. М. : Высш. шк., 1990 352 с.
- Пронин Н. М., Селгеби Д. Х., Литвинов А. Г., Пронина С. В. Сравнительная экология и паразитофауна экзотических вселенцев в Великие озера мира: ротана-головешки (Perccottus glehni) в оз. Байкал и ерша (Gymnocephalus cernuus) в оз. Верхнее // Сиб. экол. журн. 1998. 5. С. 397–406.

Русинек О. Т. Паразиты рыб озера Байкал. — М. : Т-во науч. изданий КМК, 2007. — 571 с.

- Шульман С. С. Класс Книдоспоридии Cnidosporidia Doflein 1901 // Определитель паразитов пресноводных рыб СССР / Под ред. Б. Е. Быховского. — М. ; Л. : Изд. АН СССР, 1962. — С. 47–130. Шульман С. С. Миксоспоридии фауны СССР. — М. ; Л. : Наука, 1966. — 504 с.
- Шульман С. С., Донец З. С., Ковалева А. А. Класс миксоспоридий (Мухозрогеа) мировой фауны. СПб. : Наука, 1997. Т. 1. 567 с.
- *Chen C., Ma C.* Fauna Sinica. Myxozoa. Myxosporea. Beijing : Science Press, 1998. 993 p. (Chinese, English summary).
- Košuthová L., Koščo J., Miklisová D. et al. New data on an exotic Nippotaenia mogurndae (Cestoda), newly introduced in Europe // Helmithologia. 2008. 45. P. 81–85.
- Ondračková M., Dávidová M., Blažek R. et al. Paraziti nepuvodniho hlavackovce amurskeho Perccottus glenii (Odontobutidae) v povodi reky Visly, Polsko : Sborník abstraktů z konference Biologické dny (Brno 8–9 února 2007). – Brno, Czech Republic, 2007. – P. 106. – (Czech).
- *Reshetnikov A. N.* The introduced fish, rotan (Perccottus glenii), depresses populations of aquatic animals (macroinvertebrates, amphibians, and a fish) // Hydrobiologia. 2003. **510**. P. 83–90.
- *Reshetnikov A. N.* The current range of Amur sleeper Perccottus glenii Dybowski, 1877 (Odontobutidae, Pisces) in Eurasia // Russian J. Biological Invasions. 2010. **1**. P. 119–126.