УДК 595.425:599.321

КЛЯЦЦИ КОГОРТЫ TARSONEMINA В МИКРОБІОЦЕНОЗЕ ГНЕЗД
ГРЫЗУНОВ ДОНЕЦЬКОГО ПРИАЗОВЬЯ

В. Е. Склар1, В. Д. Севастьянов2

1 Полтавский пединститут, ул. Остроградского, 2, 314601 Полтава, Украина
2 Одесский университет, ул. Петра Великого, 2, 270057 Одесса, Украина

Получено 20 ноября 1996

Клици когорти Tarsonomina в мікробіоценозі гнізд гризунів Донецького Приазов’я. Склар В. Е., Севастьянов В. Д. — В цилінному та розорінному ступені в Донецькій області України в гніздах та на тілі 7 видів гризунів виявлено 67 видів кліців когорти Tarsonomina. Розглядається склад хазійно-гніздових та гніздових фауністичних комплексів кліців кожного виду гризуна. Виявлено збіження видового складу, зустрічності та чисельності окремих видів кліців в агроценозах. Звертається увага на структурне розмаїття виявленої фауни.

Ключові слова: кліці, Tarsonomina, гризуни, хазії, Донецька обл., Украина.

The Mites of the Cohort Tarsonomina in the Rodent Nest Microhabitats of the Donetsk Azov Sea Area (Ukraine). Skляр V. E., Sevast’yanov V. D. — 67 Tarsonomina mite species were found in nests and on body of 7 rodent species in the virgin and ploughed up steppe of the Donetsk area. Host-nest and nest faunal mite associations are considered for each rodent host species. A certain impoverishment of the mite species composition, frequency and population is pointed out in agroecosystems. An attention is drawn to the structural diversity of the mite fauna.

Key words: Mites, Tarsonomina, fauna, rodents, host, microhabitats, Donetsk, Ukraine.

Взаимоотношения обитателей гнезд малых млекопитающих представляют значительный интерес для биоценологии как пример взаимосвязей в микробиоценозе. Однако познание этапов становления микробиоценоза такого типа тормозится слабой изученностью фаунистических комплексов ряда групп организмов его составляющих. В частности, свидетельств о клещах когорты Tarsonomina и их связи с хозяевами гнезд весьма фрагментарны.

Сравнительно недавно в Европе (Севастьянов, 1967) в составе нидикольной фауны было известно лишь 13 видов клещей-тарсоменим в том числе 5 видов, которые были обнаружены в гнездах 2 подвидов домовой мыши и крапчатого суслика в Хмельницкой и Одесской обл. Украины. В дальнейшем, благодаря изучению клещей гнезда 11 видов млекопитающих в Закарпатье (Севастьянов, Высоцкая, 1969: Высоцкая, 1974) и 7 видов зверьков в лесном поясе Горного Крыма (Соснин, Севастьянов, 1975) список нидикольных тарсоменим Украины возрастает до 34 видов. Обобщая материалы, поступившие на определение в Одеський университет и других районов СССР, В. Д. Севастьянов (1979) отмечает в гнездах 19 видов грызунов и насекомоядных уже 48 видов клещей когорты Tarsonomina.

Настоящее сообщение является продолжением нашей предыдущей публикации (Склар, Севастьянов, 1993) и содержит результаты сравнительного анализа видового состава и численности тарсоменим в гнездах 7 видов малых млекопитающих (сборы В. Е. Склара в Донецком Приазовье, 1972).

Место, объекты и материалы исследований. Сбор клещей проводился стационарно в Украинском государственном заповеднике "Хомутовская степь" — Новозаводской район, и в окрестностях села Зажиточного — Тельмановский район Донецкой области с сентября 1967 по сентябрь 1968 года.

Места обитания грызунов в Хомутовской степи представляют собой нераспаханную целинную степь, расположенную на равнинном или слегка холмистом плато, постепенно снижающемся в восточном направлении, и являющуюся южным вариантом разнотравно-типачково-ковыльных степей. Окруженность села Зажиточного нами как пример превращения первичного биоценоза — целинной степени в агроценоз. Территория холмистая, густо изрезана балками и оврагами, в которых сохранились нераспаханные участки.

Целинная и распаханная степь находятся на расстоянии примерно 35 км друг от друга. Раскопка гнезд и выброшка из них содержимого членоподобных проводилась по методике С. О. Высоцкой (1953). Зверьков отлавливали дилувками Герро. Около 30 % грызунов поймано живыми, руками или с помощью сконструированной нами (Склар, 1972) ловушки.

Тарсоменимы обнаружены в 133 гнездах и на 42 экземплярах грызунов 7 видов (табл. 1).

Таксономическая структура. В гнездах 4 доминирующих видов грызунов обнаружено 17702 экз. самок 64 видов тарсоменим (табл. 2). Мы не приводим
Таблица 1. Распределение по видам грызунов и биотопам гнезд с клещами когорты Tarsonemina

<table>
<thead>
<tr>
<th>Вид клещей</th>
<th>Хомутовская степь, целина гнезда</th>
<th>Тельмановский р-н, агроценоз гнезд</th>
<th>Л.п. агроценозы</th>
<th>Тельмановский р-н, агроценозы</th>
<th>Л.п. агроценозы</th>
<th>Любек вьеркки</th>
<th>Тельмановский р-н, агроценозы</th>
<th>Л.п. агроценозы</th>
<th>Любек вьеркки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apodemus sylvaticus</td>
<td>32</td>
<td>5</td>
<td>24</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculus</td>
<td>16</td>
<td>2</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtus arvalis</td>
<td>16</td>
<td>4</td>
<td>14</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricetulus migratorius</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citellus pygmaeus</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicista subtilis</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

таблица 2. Клещи когорты Tarsonemina гнезд грызунов в целиной степи и агроценозах

<table>
<thead>
<tr>
<th>Вид клещей</th>
<th>Мышь</th>
<th>Полевка</th>
<th>Серый хомяк</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>целина</td>
<td>агроценоз</td>
<td>целина</td>
</tr>
<tr>
<td>Siteroptes crossii M.</td>
<td>10</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>S. permagnus Rack</td>
<td>29</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>S. avenae (Mulk)</td>
<td>78</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>S. priscus (Krczal)</td>
<td>74</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td>S. graminitcola Sev.</td>
<td>43</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>S. kashi Rack</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S. psychrophilus Sev.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Siteroptes sp. n. 1</td>
<td>9</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Siteroptes sp. n. 2</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Siteroptes sp. n. 3</td>
<td>94</td>
<td>—</td>
<td>31</td>
</tr>
<tr>
<td>Siteroptes sp. 1</td>
<td>—</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Siteroptes sp. 2</td>
<td>2</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Pygmeaphoridae</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pediculaster calcaratus Mah.</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. mesembriniae Can.</td>
<td>1700</td>
<td>—</td>
<td>71</td>
</tr>
<tr>
<td>P. skjæri S., Ch.</td>
<td>229</td>
<td>67</td>
<td>3</td>
</tr>
<tr>
<td>P. erlengensis Krc.</td>
<td>23</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>Baceraenia centrige C.</td>
<td>3169</td>
<td>1702</td>
<td>361</td>
</tr>
<tr>
<td>B. bavarica Krczal.</td>
<td>319</td>
<td>241</td>
<td>26</td>
</tr>
<tr>
<td>B. tarsalis Hirst.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B. cultrata (Berl.)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B. graciloides Sev.</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
</tbody>
</table>

данных о видовом составе извлеченных из гнезд личинок и самцов клещей, поскольку идентификация их до вида у тарсонемин еще не разработана.

При общем значительном видовом разнообразии тарсонемин, обнаруженных в гнездах лесной мыши в целиной степи — 35 видов, в отдельном гнезде находили от 1 до 13 видов. В 10 гнездах было отмечено по 4 вида клещей. Из 14 гнезд обыкновенной полевки, обитающей в агроценозах, извлечено 25 видов...
Вид клещей | Миши лесная | Полевка | Серый хомячок
		виноградниковая	обыкновенная	аграрная	аграрная	аграрная	аграрная	
Brennandia stenops Mah.	—	3	—	—	—	—	1	
Br. silvestre (Jact)	10	9	—	—	—	—	2	
Br. kaszabi Mah.	—	—	—	—	—	—	1	
Br. pumilus Ser.	—	8	—	—	—	—	2	
Microdispus squisetosus M.	10	—	5	2	—	—	1	
Tarsonomadacae	Tarsonomus sp.	74	23	40	72	—	—	9
Steneotarsonomus sp.	8	4	7	3	10	7	—	—
Scutacaridae	Imparipes robustus Kar.	—	2	—	—	—	—	—
1. degenerans Berl.	—	—	—	3	—	—	—	
1. crassimerus Mah.	9	1	—	—	10	—	—	—
1. comatus Mah.	—	16	—	—	—	—	—	2
1. kaszabi Mah.	—	15	—	—	—	—	—	2
1. carabhidophilus Ser.	3	1	—	—	—	—	—	—
1. lyricrinus Berl.	1	1	—	—	—	—	—	—
1. penicillatus Mah.	3	1	—	—	—	—	—	—
1. platycephalus Ser.	3	—	—	—	—	—	—	—
1. hungaricus B. et M.	1	—	—	—	4	1	—	—
1. tauriensis Ser.	—	—	—	—	1	—	3	—
1. obsoletus Rack	—	—	12	8	—	—	—	4
1. caverniphilus Ser.	—	—	—	—	—	—	—	—
Imparipes sp. n. 1	28	26	1	1	37	13	—	2
Imparipes sp. n. 2	2	—	—	—	32	3	—	—
Imparipes sp. n. 3	17	22	7	—	—	—	—	—
Imparipes sp.	1	—	—	—	—	—	—	—
Heterodispus elongatus Tr.	1	30	22	94	4	88	1	17
H. citell Mah.	—	2	—	—	—	—	—	—
Heterodispus sp.	—	1	—	—	—	—	—	—
Pygmodispus zicisii Mah.	—	—	—	—	—	—	1	—
Reductacarulus singularis M.	13	4	—	—	—	6	1	—
Scutacarulus escomus (BerL)	1	—	1	—	—	3	—	1
S. quadrangularis (Palo)	7	9	—	—	—	5	—	4
S. spinosus Storean	45	1	—	—	—	—	—	1
S. culmusophilus Ser.	1	—	—	—	—	—	—	—
S. kasari Mahunka	—	7	—	—	2	—	—	4
S. subordiculatus Rack	—	—	—	—	1	—	—	—
S. tacensia Mahunka	—	—	—	—	—	—	9	—
S. spheoniodes Kar.	1	—	—	—	—	—	—	—
S. apodemii Mah.	76	—	—	—	—	—	—	—
Scutacarulus sp. n. 1	3	7	1	—	—	—	2	—
Scutacarulus sp. n. 2	—	7	—	—	—	—	—	16
Scutacarulus sp. n. 3	—	—	—	—	1	—	—	—
Scutacarulus sp.	—	—	—	—	9	—	—	—
Всего видов	35	31	16	13	29	15	16	23

Клещей, в одном гнезде находили, соответственно, по 1, 2, 4, 7, 9 и 13 видов тарсонемин.

Помимо перечисленных в таблице 2 обнаружены также следующие виды клещей: в гнездах малого суслика — *Bacerdania bavarica, B. cetiger, Steneotarsonemus*
Таблица 3. Видовое многообразие и численность тарсонемин на теле грызунов

Таблица 3. The specific variety and the quantity of the Tarsenemina mites on the rodent bodies

<table>
<thead>
<tr>
<th>Вид клещей</th>
<th>Виды грызунов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siteroptes krossi</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siteroptes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pygmephorus spinosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. erlangensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacerdania centriger</td>
<td></td>
<td>21</td>
<td>12</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>346</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B. bavarica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarsonemus sp.</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imparis sp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imparis sp. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scutacarus subordinatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего видов</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Все эти виды клещей в гнездах данных 3 видов грызунов обнаружены впервые.

В гнездах всех видов грызунов доминировал по встречаемости и по численности B. centriger. В большинстве гнезд он размножается с весны до глубокой осени, о чем свидетельствует наличие в гнездах личинок. Этот вид обнаружен в 29 из 32 гнезд лесной мыши в целинной степени и в 21 из 24 вагроценозах; в 15 из 16 гнезд домовой мыши на целине и в 13 из 15 гнезд в агроценозах; в 15 из 16 гнезд обыкновенной полевки на целине; во всех гнездах серого хомячка как на целине, так и в агроценозах.

B. bavarica обнаружена также в гнездах всех грызунов. Он встречался не менее чем в 50% обследованных гнезд большинства грызунов и в 5 из 6 гнезд серого хомячка. Лишь в отдельных гнездах 4 вида грызунов найдена Microdipsus equisetosus и Heterodipsis elongatus.

Обычность видового состава или степень фаунистического сходства наиболее отчетливо проявляется при сравнении гнезд лесной мыши и обыкновенной полевки как в целинной, так и в распаханной степени. Гнезда домовой мыши оказались малопригодными для поселения клещей семейств Siteroptidae и Scutacaridae.

Эколого-географические группировки тарсонемин микробиоценозов гнезд. По тесноте связей с мелкими млекопитающими принято (Высоцкая, 1967, 1974, и др.) разделять численность на группу хозяина, хозяинно-гнездовую группу и группу гнезда.

Представлены группы хозяина среди тарсонемин не обнаружено, поскольку среди них нет ни паразитов, ни хищников, находящихся исключительно на теле зверьков.

Хозяинно-гнездовая группа включает клещей, переходящих из гнезда на тело зверьков на более им не менее значительное время.

Явно тяготеют к обитанию на теле млекопитающих клещи рода Pygmephorus. Их эволюция направлена на усиление форического связей с млекопитающими, о чем свидетельствует превращение первоначально кохильной лапки первой конечности в прикрепительную — приспособленную к удержанию на шерсти зверьков. Виды клещей рода Pygmephorus обычны в гнездах и на теле многих видов грызунов и насекомоядных Европы (Севастинов, 1979). Впервые мы отмечаем P. spinosus и P. erlangensis в гнездах серого хомячка, а P. spinosus — в гнездах степной мышковки и серой крысы.

В Донецком Приазовье на 3 видах грызунов обнаружен B. bavarica. Он также обычен в составе нидикольной акарофауны Европы. Указанные 3 вида клещей размножаются
в гнездах грызунов (табл. 3). В гнездово-хозяйственную группу мы помещаем и B. centriger — исключительно эврибионтный вид (Севастьянов, 1979). Возможно, тело зверьков привлекает его наличию различных органических остатков. Остальные виды тарсонем, указанные в таблице 3, на теле мlekопитающих обнаружены впервые. Они — обычные обитатели почв в различных регионах Европы.

Гнездовая группа. Многие виды тарсонем проникают в гнезда из почвы, лиственной подстилки, гнильных пней, мха. Это большинство видов сем. Siteroptidae, из пигмеоформ B. gracilis, B. graciloides виды подрода Brennandania, Microdispus equisetosus из сем. Scutacaridae Imperiparus hystricinus, Heterodipsus elongatus, Scutacarus eucomus, S. quadrangularis, S. apodemus. Встречаются и численность их в гнездах незначительна, но изредка в гнездах наблюдаются вспышки размножения отдельных видов (табл. 2).

Энтомофильные тарсонемы проникают в гнезда млекопитающих на насекомых. Это, во-первых, мирмекофильтные виды — Brennandania pumilis, Imperiparus hystricinus, при наличии муравейников в пределах гнезда численность этих клещей и их разнообразие значительно возрастает; во-вторых, диптерофильные клещи, использующие для форезии различные виды мух. Прежде всего это все виды клещей подрода Pediculaster. Ряд видов этого рода узко специфичны в выборе мух- хозяев: в-третьих, находящиеся в форфисовых связях с насекомыми- копрофагами и некрофагами, в основном жуками. В частности Heterodipsus elongatus находится в форфисовых связях с навозником Copris lunaris, Pygmodisus ziscii и Reductacarus singularis. связаны со многими жуками-копрофагами.

В гнездах млекопитающих встречаются также единичные экземпляры растениевобитающих тарсонем, в нашем материале это клещи сем. Tarsonomidae и Siteroptidae.

Выводы. 1. В комплексе клещей когорт Tarsonemina — обитателей гнезд грызунов — лишь отдельные виды тяготеют к обитанию в гнездах и могут посещать тело зверьков — их хозяев. Остальные виды — гетерогенная экологическая групировка, слагающаяся из обитателей окружающих гнездо биоценозов.

2. В целинной степени наиболее благоприятны для обитания тарсонемин гнезд лесной растительности и обычного полевого птицы, занимающего гнездом домовой птицы.

3. Распада целинной степени ведет к обеднению фаунистических комплексов тарсонемин гнезд, что отражает общее обеднение акарофоны агроценозов по сравнению с первыми биоценозами.

Всесятняков В. Д. Клещи когорт Tarsonemina и надсемейства Anoetoidea фауны СССР: Авто- реф. дис. ... докт. биол. наук. — Киев, 1979. — 52 с.

